![]() |
|||||||||||||||||||||||||||||||||||||||||||||||
Главная Рефераты по зарубежной литературе Рефераты по логике Рефераты по маркетингу Рефераты по международному публичному праву Рефераты по международному частному праву Рефераты по международным отношениям Рефераты по культуре и искусству Рефераты по менеджменту Рефераты по металлургии Рефераты по муниципальному праву Рефераты по налогообложению Рефераты по оккультизму и уфологии Рефераты по педагогике Рефераты по политологии Рефераты по праву Биографии Рефераты по предпринимательству Рефераты по психологии Рефераты по радиоэлектронике Рефераты по риторике Рефераты по социологии Рефераты по статистике Рефераты по страхованию Рефераты по строительству Рефераты по схемотехнике Рефераты по таможенной системе Сочинения по литературе и русскому языку Рефераты по теории государства и права Рефераты по теории организации Рефераты по теплотехнике Рефераты по технологии Рефераты по товароведению Рефераты по транспорту Рефераты по трудовому праву Рефераты по туризму Рефераты по уголовному праву и процессу Рефераты по управлению |
Реферат: Лінійна модель виробництваРеферат: Лінійна модель виробництваЛІНІЙНА МОДЕЛЬ ВИРОБНИЦТВА 1. Лінійні моделі виробництва та лінійне програмування Будь-яке національне господарство розвивається в складній мережі міжгалузевих взаємозв'язків, які зрозуміти шляхом простого математичного апарату неможливо. Наприклад, попит на автомобілі впливає не тільки на автомобільну промисловість, але непрямо і на металургію – виробника базової сировини для виготовлення автомобілів, і на галузі, пов'язані з виробництвом шин, і інших комплектуючих частин, а також на галузі, які виготовляють радіоелектронне устаткування та ін. Прості розрахунки показують, що «лобовий» підхід та арифметика не допоможуть при спробі кількісного аналізу прямого й непрямого ефекту поширення таких впливів. Метод міжгалузевого аналізу, розроблений американським економістом російського походження Василем Леонтьєвим, дозволяє дати послідовні та чисельно впевнені відповіді на запитання, пов'язані з міжгалузевими взаємодіями й їх впливами на основні макроекономічні показники. Розглянемо діяльність найнижчої ланки макроекономіки (виробничої одиниці – заводу, цеху). Потрібно скласти план виробництва, який забезпечує максимальний ступень виконання завдання. Щодо даної виробничої одиниці відомі її технічні можливості, а також кількість сировинних ресурсів, які можна використати. Нехай кількість
всіх видів ресурсів Технологією
виробництва товарів
Отже, можна
скласти технологічну матрицю, яка повністю описує технологічні можливості
виробництва. Позначаємо її через
Нехай задані
кількості Вважатимемо
технологію виробництва лінійною, тобто припустимо, що всі витрати ресурсів
зростають прямо пропорційно обсягу випуску. Припустимо, що витрати під час
випуску Отже, витрати
ресурсів, необхідні для виконання плану виробництва або в матричній
формі вектором Розглянемо
можливі постановки оптимізаційної задачі. Нехай задані ціни
Така постановка
задачі відповідає принципу планування за валом. Випадок, коли планування
випуску проводиться за номенклатурою товарів, можна змоделювати інакше. Нехай
заданий вектор
Тут нерівність Моделі (1), (2),
хоча й відбивають певні риси реального виробництва, є, значно ідеалізованими.
Так, відсутнє таке важливе для виробництва поняття, як час. Вважається, що всі
необхідні ресурси Незважаючи на розходження змістовних результатів ілюстративні лінійні моделі (1), (2) мають багато спільного, а саме є стандартними задачами лінійного програмування. Основними обчислювальними схемами розв’язування задач лінійного програмування є симплекс-метод і його модифікації. 2. Статична схема міжгалузевого балансу. Модель Леонтьєва Основою багатьох
лінійних методів виробництва є схема міжгалузевого балансу. Нехай весь
виробничий сектор народного господарства розбитий на Припустимо тепер,
що в деякий момент часу, наприклад, у році Таблиця 1
Величини
Отже, валова продукція визначається як сума кінцевої й проміжної продукції. Одиниці виміру всіх зазначених величин можуть бути натуральними або вартісними, залежно від чого розрізняють натуральний і вартісний міжгалузевий баланс. Якщо всі елементи
Першим
допущенням даної схеми є те, що сформована технологія виробництва є незмінною
протягом деякого проміжку часу. Друге допущення полягає в тому, що для
виробництва Під час
виробництва набору продукції
Переходячи до
матричних позначень, стверджуємо, що вектор виробничих витрат дорівнює
або в матричній формі
Систему рівнянь
(6) називають моделлю міжгалузевого балансу або моделлю Леонтьєва. Дана модель
пов'язує обсяги валових випусків з обсягами кінцевої продукції й може бути
використана для розрахунку цих величин. Наприклад, якщо відомий набір можливих
при даних ресурсах випусків
при заданій
матриці 3. Розв’язок моделі Леонтьєва За економічними
міркуваннями всі коефіцієнти матриці Розв’язок, який має бути знайдений, за
змістом також повинний мати тільки невід’ємні компоненти, тобто потрібне виконання нерівностей Матриця Продуктивність
матриці Розглянемо умови
продуктивності матриці 1) послідовні
головні мінори матриці
2) матриця 3) матричний ряд
4) максимальне
власне число Повернемося до
системи рівнянь (7). За заданим вектором Особливістю
матриці 4. Властивості невід’ємних матриць Нехай Мовою моделі
Леонтьєва ізольованість множини
де Матриця Інакше кажучи,
матриця Нерозкладність
матриці Розглянемо деякі властивості нерозкладних матриць: 1. Нерозкладна
матриця не має нульових рядків і стовпців; якщо 2. Якщо Теорема
Фробеніуса-Перрона: нерозкладна матриця 4. Лема: нехай 5. Лема: якщо
матриця 5. Зв'язок між коефіцієнтами прямих і повних витрат Нехай
розглядається матриця коефіцієнтів прямих витрат у натуральному або вартісному
виразі Для виробництва
одиниці продукції Елементи вектора
витрат Матриця
Непрямими
витратами другого порядку називають прямі витрати, необхідні для забезпечення непрямих
витрат першого порядку, тобто де Продовжуючи за
аналогією, назвемо непрямими витратами порядку
Визначимо тепер повні
витрати як суму прямих і непрямих витрат усіх порядків. Відповідно до цього
матриця
або з огляду на
те, що
Коефіцієнти прямих і повних матеріальних витрат мають важливе значення для характеристики структури техніко-економічних зв'язків і для аналізу ефективності виробництва з боку витрат упредметненої праці. Суттєва відмінність коефіцієнтів повних витрат від коефіцієнтів прямих витрат полягає в тому, що вони є не галузевими, а народногосподарськими показниками й формуються з урахуванням технологічних зв'язків між галузями. З'ясуємо такий момент. Чи не виявляться будь-які з коефіцієнтів повних витрат нескінченно великими? Розглянемо
матрицю
Очевидно, що
елементи матриці
Для великих
значень Коефіцієнти 6. Коефіцієнти трудових витрат. Баланс трудових ресурсів Модель Леонтьєва, як відзначалося раніше, відображає лише потенційні можливості, закладені в технології виробничого сектора. У даній моделі передбачається, що процес виробництва відбувається миттєво – всі проміжні продукти вважаються виробленими до того моменту, коли в них з'являється потреба, тобто кожна галузь здатна зробити будь-який обсяг своєї продукції за умови, що їй буде забезпечена сировина в необхідній кількості. Насправді, це не так, оскільки виробничі можливості будь-якої галузі обмежені наявним обсягом основних фондів трудових ресурсів. Розглянемо проблему розподілу трудових ресурсів, яку можна дослідити за допомогою моделі Леонтьєва. Зіставимо кожній Нехай Вектор непрямих
витрат праці першого порядку Міркуючи
аналогічно тому, як це робилося під час побудови коефіцієнтів непрямих
матеріальних витрат, дійдемо висновку, що вектор
Повні витрати
праці
У матричному
записі, вважаючи, що
Якщо матриця Зменшення повних витрат праці на одиницю продукції є узагальнюючим показником збільшення продуктивності праці, ефективності виробництва. Розрахунок коефіцієнтів повних витрат праці важливий для ціноутворення на етапі встановлення об'єктивної основи ціни – вартості. Для обчислення коефіцієнтів повних витрат праці використовують ітераційну процедуру
що дозволяє з заданою точністю визначити дані коефіцієнти. |
|
|||||||||||||||||||||||||||||||||||||||||||||
|